
Object oriented
programming with

Python
Andrew Walker

andrew.walker@bris.ac.uk

for Earth Scientists:
27 & 29 Sept. 2011

mailto:andrew.walker@bris.ac.uk
mailto:andrew.walker@bris.ac.uk

Why care about OO?
You can get a long way with Python without knowing anything about
objects, but:

• Objects are in the language, and understanding them will make
the syntax make more sense.

• Essentially all mainstream languages developed since ~1970
(C++, Java, JavaScript...) are OO and others have introduced OO
(even Fortran).

• Objects can be useful in your code. They are often essential if
you use other peoples code.

• The way objects work in Python is fairly standard and quite easy.
If you need to learn about objects, Python is a good language to
use.

for Earth Scientists:
27 & 29 Sept. 2011

for Earth Scientists:
27 & 29 Sept. 2011

x

yImagine you need
to write a program
to deal with a shape

on a plane...

Model a shape as two
lists of points:

x_pts = [0.5, 1.2,
 1.1, ...]
y_pts = [0.5, 0.6,
 -0.9, ...]

for Earth Scientists:
27 & 29 Sept. 2011

x

yImagine you need
to write a program
to deal with a shape

on a plane...

Model a shape as two
lists of points:

x_pts = [0.5, 1.2,
 1.1, ...]
y_pts = [0.5, 0.6,
 -0.9, ...]

Do things to the shape with a
collection of functions:

def reflect_y(xs, ys):
 ...
 return (new_xs, new_ys)

x_pts, y_pts = reflect_y(x_pts,
 y_pts)

for Earth Scientists:
27 & 29 Sept. 2011

x

y

x_pts1 = [0.5, 1.2,
 1.1, ...]
y_pts1 = [0.5, 0.6,
 -0.9, ...]

x_pts2 = [-1.0,-1.5,
 -2.0]
y_pts2 = [1.1, 2.0,
 1.4]

Add another shape,
if you have been

careful, your
functions still all

work but you need
more variables.

Just remembering the details gets
a little bit harder. And then a little
bit harder. Eventually global state
makes things very difficult indeed.

Objects are just a way
of organising data...

 ... which should make
code reuse easer and

enhance maintainability
for Earth Scientists:
27 & 29 Sept. 2011

You already know what
objects look like...

obj = 1+17j
obj.imag

obj = open(“file”,‘r’)
for line in obj:
 ...
obj.close()

... because in Python,
everything is an object.

for Earth Scientists:
27 & 29 Sept. 2011

object.attribute

object.method(argument)

Objects ‘live’
in variables

obj2 = object

Objects can
have attributes

Objects can
have methodsfor Earth Scientists:

27 & 29 Sept. 2011

(There is a type
called “object”)

(OO programmers
like dots)

for Earth Scientists:
27 & 29 Sept. 2011

x

y
Instead of keeping

lists of points, make
the shapes objects:

shape1 = Shape([0.5,
 1.2, ...],[0.5,
 0.6, ...])

shape2 = Shape([-1.0,
 -1.5,-2.0],[1.1,
 2.0,1.4])

Here Shape the name of a class of
objects, shape1 and shape2 are
instances of the class. We say shape1 is
a Shape. The “is a” relationship is key
in OO design. The capitalisation of
classes is a Python convention.

shape1

shape2shape2

for Earth Scientists:
27 & 29 Sept. 2011

x

y

Points are then
attributes. e.g.

shape1.x_pt # a list?
shape1.y_pt # a set?

Everything in Python is an object. This
means we can use anything as an
attribute, even other objects.
Normally stick to the built in types.

shape1

shape2

for Earth Scientists:
27 & 29 Sept. 2011

x

yFunctions that
operate on an

object’s data become
methods.

shape3 = shape1.reflect_y()

or

shape3 = shape1.reflect(‘yaxis’)

shape1
shape3

Methods are just
functions connected
to objects. They
need brackets and
can have arguments.

shape2

shape1

shape3

Shape

Each object belongs to the class of
shapes. They are instances of the
class and have the same attributes
and methods. They represent
similar things and you can do the
same sort of thing to them.

for Earth Scientists:
27 & 29 Sept. 2011

How to make a class
class Foo:

 def __init__(self, arg):
 self.attribute = arg*5
 self.count = 0

 def method(self, arg):
 self.count = self.count+1
 return self.attribute*self.count

Class definition

for Earth Scientists:
27 & 29 Sept. 2011

class Foo:

 def __init__(self, arg):
 self.attribute = arg*5
 self.count = 0

 def method(self, arg):
 self.count = self.count+arg
 return self.attribute*self.count

Class definition

instance = Foo(2)
print instance.method(2)
20
print instance.method(2)
40

Class use

Using the class “like a
function” calls the
__init__ method.

for Earth Scientists:
27 & 29 Sept. 2011

class Foo:

 def __init__(self, arg):
 self.attribute = arg*5
 self.count = 0

 def method(self, arg):
 self.count = self.count+arg
 return self.attribute*self.count

Class definition

instance = Foo(2)
print instance.method(2)
20
print instance.method(2)
40

Class use

Self (the first argument
to any function in a class

definition) represents
this instance of the class.

for Earth Scientists:
27 & 29 Sept. 2011

class Foo:

 def __init__(self, arg):
 self.attribute = arg*5
 self.count = 0

 def method(self, arg):
 self.count = self.count+arg
 return self.attribute*self.count

Class definition

instance = Foo(2)
print instance.method(2)
20
print instance.method(2)
40

Class use

Method and attribute
names are used directly

for Earth Scientists:
27 & 29 Sept. 2011

for Earth Scientists:
27 & 29 Sept. 2011

You now know how
to define the Shape

class

class Shape:

 def __init__(self, xpts, ypts):
 self.xs = xpts
 self.ys = ypts

 def reflect_y(self):
 for x, y in zip(self.xs, self.ys):
 ...
 return Shape(new_xs, new_ys)

shape1 = Shape(....)
shape3 = shape1.reflect_y()

x

y

shape1
shape3

Objects are just a way of
organising data...

 ... which should make code
reuse easer and enhance

maintainability...

for Earth Scientists:
27 & 29 Sept. 2011

... and you know
how they work

for Earth Scientists:
27 & 29 Sept. 2011

Think about calculating the
area of our shapes. This is

much easer for shape2 than
shape1. Shape2 is a special

kind of shape

x

y

shape1

shape2

class Shape:
 ...
 def area(self):
 # Hard problem for
 # the general case

class Triangle:
 ...
 def area(self):
 # Not too difficult
 # just an equation

shape2

shape1

shape3

Shape

A Triangle is a Shape; shape2 is a
Triangle; shape2 is a shape with
“special” methods. We don’t want
to have to rewrite all the shared
code.

for Earth Scientists:
27 & 29 Sept. 2011

Triangle

for Earth Scientists:
27 & 29 Sept. 2011

Triangle inherits from Shape. When
an instance of Triangle calls a method

the function defined in Triangle is
used, if this does not exist, the one

defined in Shape is used (and so on).

x

y

shape1

shape2
class Shape:
 def __init__(self, ...):

class Triangle(Shape):
 def __init__(self, ...):
 # Check we have 3 points
 Shape.__init__(self, ...)

 def area(self):
 # Not too difficult
 # just an equation

Special methods

Everything is an object. We need
a way to make our objects
interact with the language.

for Earth Scientists:
27 & 29 Sept. 2011

class Shape:
 def __init__(self, xs, ys):

square = Shape(xs, ys)

__init__ called on
object creation

Special methods

Everything is an object. We need
a way to make our objects
interact with the language.

for Earth Scientists:
27 & 29 Sept. 2011

class Shape:
 def __add__(self, y):
 # Join the two shapes
 # together?

square + shape2

__add__ method of
object on the LHS

called with the object
on the RHS as an

argument

Special methods

Everything is an object. We need
a way to make our objects
interact with the language.

for Earth Scientists:
27 & 29 Sept. 2011

class Shape:
 def __len__(self):
 # return the number of
 # points

len(square)

__len__ method called
when built in len()

function used.

Special methods

Everything is an object. We need
a way to make our objects
interact with the language.

for Earth Scientists:
27 & 29 Sept. 2011

class Shape:
 def __iter__(self):
 # set up and return
 # an iterator object

for points in square:

__iter__ method
called when an object

is used with for.

shape2

shape1

shape3

Shape

Everything is an objectfor Earth Scientists:
27 & 29 Sept. 2011

Triangle

square

Square

dictionary_a

dict

dictionary_b

Object

Object orientated
programming:

for Earth Scientists:
27 & 29 Sept. 2011

Encapsulation

Dynamic dispatch

Inheritance

When do you care...
with Python

• Small Python programs - just sits at the back of your
mind. You understand file.close(). Understand how stuff
in the library works.

• Bigger programs - you may define one or two critical
classes.

• Occasionally you need to make your classes interact
with the wider program (__iter__ etc.). E.g. if you need
a quaternion class.

• Python documentation authors assume you know
about OO.

for Earth Scientists:
27 & 29 Sept. 2011

